K2 of quaternion algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quaternion Algebras

The additive identity is (0, 0), the multiplicative identity is (1, 0), and from addition and scalar multiplication of real vectors we have (a, b) = (a, 0) + (0, b) = a(1, 0) + b(0, 1), which looks like a+ bi if we define i to be (0, 1). Real numbers occur as the pairs (a, 0). Hamilton asked himself if it was possible to multiply triples (a, b, c) in a nice way that extends multiplication of co...

متن کامل

Levels of Quaternion Algebras

The level of a ring R with 1 6= 0 is the smallest positive integer s such that −1 can be written as a sum of s squares in R, provided −1 is a sum of squares at all. D.W. Lewis showed that any value of type 2n or 2n + 1 can be realized as level of a quaternion algebra, and he asked whether there exist quaternion algebras whose levels are not of that form. Using function fields of quadratic forms...

متن کامل

Selectivity in Quaternion Algebras

Let A be a quaternion algebra over a number field K and assume that A satisfies the Eichler condition; that is, there exists an archimedean prime of K which does not ramify in A. Let Ω be a commutative, quadratic OK-order and let R ⊂ A be an order. We determine the isomorphism classes in the genus of R which admit an embedding of Ω. In particular, we show that the proportion of the genus of R a...

متن کامل

Serre Weights for Quaternion Algebras

We study the possible weights of an irreducible 2-dimensional mod p representation of Gal(F/F ) which is modular in the sense of that it comes from an automorphic form on a definite quaternion algebra with centre F which is ramified at all places dividing p, where F is a totally real field. In most cases we determine the precise list of possible weights; in the remaining cases we determine the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1979

ISSN: 0021-8693

DOI: 10.1016/0021-8693(79)90337-5